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Abstract. We have recently used a combination of classical elasticity theory and Miedema’s 
model for :he heat of formation of alloys to predict the glass-forming ranges of binary 
transition metal systems. In this paper we extend this approach to study the glass-forming 
regions in the ternary case. The predictions of the theory are compared with available 
experimental information for some Co-based ternary alloys, and we relate our treatment to 
the empirical equation recently proposed by Ueno and Waseda to describe the minimum 
solute concentration for glass formation in ternary systems. 

1. Introduction 

Since the pioneering work by Buckel and Hilsch (1954) and Duwez and coworkers 
(Klement et a1 1960), a wide variety of techniques have been developed to produce 
amorphous alloys by either liquid quenching, vapour quenching or solid-state reactions 
(see, e.g., Johnson 1986 and references therein). At the same time, various models have 
been proposed to predict the glass-forming ability (GFA) of metallic alloys (van der Kolk 
et a1 1988), which depends on both alloy composition and cooling-rate conditions. 

We have recently shown (Ldpez et a1 1987, Alonso et a1 1988, Gallego eta1 1988; see 
also van der Kolk et a1 1988 and Loeff et al 1988) that a treatment which combines 
classical elasticity theory and Miedema’s model of heats of formation of alloys affords 
good predictions of the glass-forming ranges of binary transition metal systems. This 
approach takes into account the main factors that have been recognised empirically to 
be correlated with GFA, such as atomic size mismatch, the heat of formation of the liquid 
alloy, and differences in electronegativity and valence. Our treatment highlights the key 
role of atomic size mismatch in determining the composition range in which amorphous 
phases can be found. The importance of atomic size mismatch was also concluded by 
Egami and Waseda (1984), who have used an atomic elasticity theory to show that the 
minimum solute concentration necessary to obtain binary amorphous alloys by rapid 
quenching from the melt is inversely related to the atomic volume mismatch. 

In this paper we use the same approach as for the binary case to predict the glass- 
forming regions of ternary transition metal systems. As will be shown, there is some 
relationship between our treatment and the equation suggested by Ueno and Waseda 
(1985) to describe the minimum solute concentration for glass formation in ternary 
alloys in terms of the relative size of the components, an extension of that proposed by 

0953-8984/90/296245 + 06 $03.50 @ 1990 IOP Publishing Ltd 6245 



6246 L J Gallego et a1 

Egami and Waseda (1984) for binary alloys. In this paper we first introduce the main 
ingredients of the theory, and then compare its predictions with the experimental 
information reported by Nos6 et a1 (1981) and Kim et a1 (1988) for a set of ternary Co- 
based alloys. 

2. Method 

The glass-forming region of a binary or multicomponent alloy is delimited both by the 
compositions at which the Gibbs free energies of competing crystalline phases (usually 
substitutional solid solutions) become more negative than that of the amorphous phase 
and, additionally, by the possible presence of structurally simple compounds (see, e.g., 
L6pez et a1 1987). Here we shall make the usual simplification of neglecting entropy 
effects (van der Kolk et a1 1988, Loeff et a1 1988) and compare only the enthalpies of 
formation of the different phases. 

As in the case of binary alloys (L6pez et a1 1987, van der Kolk et a1 1988, Loeff et a1 
1988), we write the enthalpy of formation of a ternary solid solution of transition metals 
A,  B and C as 

where A H L B C  is a chemical contribution due to electron redistribution when the alloy 
is formed, A H L B C  is an elastic or atomic size mismatch contribution, and AHABC is a 
structural contribution. In the amorphous state the elastic and structural contributions 
are absent, so that the enthalpy of formation can be written as 

where x i  is the concentration of component i and AH!+ is the enthalpy difference 
between the amorphous and crystalline states of the pure element i .  According to van 
der Kolk et a1 (1988) this quantity is given by 

where a = 3.5 J mol-’ K-’ and Tm3i is the melting temperature of component i. 

of the heat solution of A in B is 

Here VA is the atomic volume, and consequently Vx3 is proportional to the surface area 
of the atomic cell. F ( A ,  B) depends only on properties of the pure metals, namely the 
electronegativities qA and qB, and the electron densities nA and nB at the boundaries of 
bulk atomic cells. Specifically, 

where P and Q are constants. F(A, B) is thus proportional to the interaction energy per 
unit area of contact between A and B cells. Extensive tables of Ahc have been published 
(Niessen and Miedema 1983, de Boer eta1 1988). The chemical contribution to the heat 
of formation of a random binary solid solution with concentrations xA and X, is (Loeff 
et a1 1988) 

AHTLc = AHLBC + AHLBC + AHiBC (1) 

AH$& = A H L B C  + x A A H ~  + xBAH$-’ + X C A H P  (2) 

AH:-‘ = aT,,i (3) 

In Miedema’s model of binary alloys (Niessen and Miedema 1983), the chemical part 

Ahc(A in B) = Vy’F(A, B). (4) 

F(A, B) = [2/(nA1I3 + n i ’ / 3 ) ] [ - P ( q ~  - q ~ ) ’ +  Q(nY3 -nY3)’] ( 5 )  

AH‘,, = xAxB(xBA~‘(A in B) + xAAhC(B in A)) 

~H‘,B =XAXB(XBV$!’ + X,V2$’)F(A, B). 

(6) 

(7) 

which according to (4) can be expressed in the form 

The concentration-dependent factor (x, Vx3 + XAv2$’) takes account of the deviation 
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from regular solution behaviour, which in Miedema’s model arises from the total inter- 
action energy between the two components in the alloy being assumed to be proportional 
to the total surface area of contact between A and B atomic cells (equation (4 ) ) .  

The extension of the above model to a ternary alloy with concentrations xA,  xB  and 
xc is 

with 

AH; = xjxi(xjAhc((i inj )  + x ,Ahc( j  in i ) )  ( 9 )  

if one assumes that the chemical interaction per unit surface area of contact between A 
and B cells is not changed by the presence of a third component C. Work on some ternary 
compounds (de Boer et a1 1988) appears to justify this assumption. 

The expression for AHLB or AHkBC must be modified if evidence for chemical short- 
range order exists. In the case of a fully ordered binary intermetallic compound this can 
be taken into account (de Boer etaZl988) by multiplying the right-hand side of equation 
(6)  by the factor [l  + y ( x L x i ) * ] ,  which involves an empirical constant y = 8 and the cell 
surface concentrations xS,  and x i  in the alloy: 

(10) x i  = x A v ~ 3 / ( x A v ~ 3  + x B v y 3 )  x i  = 1 - x i .  

This factor takes account of the increased fraction of atomic cells of type A in contact 
with cells of type B. For the case of binary alloys with a partial degree of chemical order, 
Weeber (1987) has proposed using a reduced value of y (note that y = 0 leads to 
complete disorder). Since little is known about chemical short-range order in binary solid 
solutions, and even less for ternary ones, we assume in this paper that the alloys are 
disordered. 

The elastic contribution to the heat of solution in a binary system is given by (Niessen 
and Miedema 1983, de Boer et a1 1988) 

where p B  is the shear modulus of the host, KA is the compressibility of the solute metal 
and V i  and V$ are effective volumes corrected for charge transfer effects. An extension 
to the finite concentration case has been developed by Lopez and Alonso (1984), but we 
have observed that similar results can be obtained for the elastic contribution to the heat 
of formation with a simple interpolation formula similar to equation (6)  (Loeff et a1 
1988): 

AH;  = x jx i ( x iAhe ( i in j )  + xiAhe(jin i ) ) .  

AHLBc = A H i B  + AHLC + AHbc. 

(12) 

(13) 

For the ternary case we now assume 

In the applications of the theory described in section 3 below we will focus on the A-rich 
region of the ternary phase diagram. Under these conditions, the work of Alonso et a1 
(1985) on the interaction of impurities in ternary alloys indicates that the additivity 
approximation is reasonable when elements B and C are both oversized or both 
undersized with respect to the host A. On the other hand, an elastic contribution 
AHLBC smaller than that given by equation (13) is to be expected if V B  > V A  > V c ,  in 
which case the size mismatch effects of B and C in A can partly cancel each other when 
B and C are nearest neighbours. Chemical short-range order must evidently contribute 
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to this effect, i.e. the cancellation effect increases if first-neighbour B-C pairs are found 
more often than for a random distribution. 

The structural contribution AHS to the heat of formation of a solid solution arises 
from the well-known correlation between the number of valence (s + d) electrons in 
transition metals and the observed crystal structure (Niessen and Miedema 1983). The 
addition of a second transition element with a different valence must in general modify 
the structural contribution that stabilises the known crystal structure of the pure host. 
Niessen and Miedema (1983) (see also Lopez and Alonso 1985) have been able to 
quantify this effect for binary solid solutions: 

AHXB = ~ o ( a i i o y ) ( z )  - x A E ~ ( A ) ( z A )  - x B E ~ ( B ) ( z B )  (14) 
where is the average number of valence electrons in the alloy, and the E,(Z) are lattice 
stabilities found by these authors as functions of the number 2 of valence electrons for 
each crystal structure CT (0 = BCC, HCP or FCC). This description of structural effects in 
alloys formed by two transition metals rests on the formation of a common d band on 
alloying, which is justified by band calculations (Pettifor 1987). Evidently there is no 
essential difference if there are two types of impurities instead of only one, so that in 
this case 

AHSABC = ~ o ( a i i o y ) ( z )  - x A E ~ ( A ) ( z A )  - x B E o ( B ) ( Z B )  - x c E , ( c ) ( Z c ) -  (15) 

3. Results 

By comparing the enthalpies of formation of the solid solution and the amorphous phase 
(equations (1) and (2)), an estimate of the glass-forming range of ternary transition 
metal alloys can be obtained. Contrary to the binary case (see, e.g. , Egami and Waseda 
1984), systematic experimental information on the glass-forming capacity of ternary 
transition metal systems is very scarce, so that we are not able to test the model on 
a wide range of systems. However, the comparison carried out below between the 
theoretical predictions and the experimental information reported by NosC et a1 (1981) 
and Kim et a1 (1988) for a set of ternary Co-based alloys provides, in our opinion, good 
evidence for the reliability of our treatment. 

In table 1 we show the calculated minimum concentration of Zr for glass formation 
in Co-Zr-M (M = Nb, W, MO, V and Cr) for several concentrations of M, together with 
the experimental data obtained for glasses formed by liquid quenching (NosC et a1 1981) 
and sputtering deposition (Kim et a1 1988). All data are for the Co-rich region. The 
predicted values agree reasonably with the experimental results, especially with those 
obtained by liquid quenching. The differences between the two sets of experimental 
data are due to differences in cooling rates (Nishi et a1 1981): in the case of glasses 
produced by rapid quenching from the melt, the cooling rate is within the range lo5- 
lo6 K s-l; for alloys formed by sputtering deposition the effective quenching rate is more 
difficult to assess, and depends upon the details of the experimental conditions. Note 
that all the five ternary systems considered satisfy the condition discussed above for 
additivity of the elastic part of the enthalpy, VA < Vc < VB (see, e.g., de Boer eta1 1988). 

In table 1 we also give the calculated minimum solute concentration for glass for- 
mation obtained using the relation proposed by Ueno and Waseda (1985) 

XF" = (Ao - I A V A C I V A  I ~ C ) I I A V A B I V A I  (16) 
where A, is an overall empirical parameter which depends on the kind of quenching 
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Table 1. Minimum concentrations of Zr for glass formation in Cc-Zr-M (M = Nb, W, MO, 
V and Cr) ternary alloys, in the Co-rich region. SAL: calculated in this work; uw: predicted 
from the Uenc-Waseda equation (16); LQ: liquid quenchingresults; SP: sputteringdeposition 
data. Experimental data (LQ and SP) have been estimated from figures reported by Nos6 et 
a1 (1981) and Kimetal(l988). 

X M  = 0.025 xM = 0.050 

M SAL U W  LQ SP SAL U W  LQ SP 

Nb 0.088 0.100 - 0.044 0.075 0.086 - 0.030 

MO 0.096 0.106 0.075 0.053 0.090 0.098 0.062 0.049 
V 0.103 0.109 0.079 0.063 0.106 0.105 0.074 0.060 

W 0.095 0.104 0.074 - 0.088 0.094 0.057 - 

Cr 0.105 0.112 0.083 - 0.109 0.111 0.070 - 

M SAL U W  LQ SP SAL U W  LO SP 

Nb 0.060 0.072 - 0.018 0.044 0.059 - 0.010 
W 0.081 0.085 0.053 - 0.072 0.075 0.053 - 
MO 0.084 0.090 0.057 0.041 0.078 0.082 0.053 0.034 
V 0.108 0.101 0.070 0.057 0.111 0.097 0.062 0.050 
Cr 0.113 0.109 0.062 - 0.117 0.108 0.060 - 

technique used (Kim et a1 1988). Equation (16) emphasises the role of atomic size 
mismatch in determining the glass-forming concentration range, and is a generalisation 
of the equation proposed by Egami and Waseda (1984) for the binary case. In applying 
(16) to the systems of table 1 we have used the value A,, = 0.1 suggested by Ueno and 
Waseda (1985) for liquid quenched alloys, and the volume mismatch effect has been 
evaluated from the atomic radii of the elements reported by these authors. 

As table 1 shows, the values of the minimum solute concentration for glass formation 
derived from the Ueno-Waseda equation are close to those obtained with the model 
used in this paper. The reason is that the two approaches are related as follows. If we 
neglect the structural contribution in (l), and bear in mind that the chemical con- 
tributions in equations (1) and (2) are assumed to be the same, the glass-forming ranges 
of ternary alloys can be determined from the equation 

AHLBc = x A A H T  + XgAHag5 + XCAHE-'. (17) 
The left-hand side of this expression is evaluated from equations (12) and (13). In the 
dilute region (xA + 1), equation (17) becomes 

xBAhe(B in A) + xcAhe(C  in A) = A H T  (18) 
so that, using equation (ll), the minimum concentration of component B for glass 
formation will be given by 

AH? - [ 2 K c p ~  (vi- vE)2/(3KcVi +4pAvE)]xC 
x y  = (19) 2KBpA(vi - vg >2/(3KB vi + 4 p A  vg ) 

The similarity in form of equations (16) and (19) is evident. Both expressions give the 
minimum solute concentration for glass formation in ternary alloys in terms of the 
relative atomic sizes of the components. It should be noted, however, that both these 
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equations are simple approximate expressions which strictly should be applicable only 
in the dilute region and when structural contributions can be neglected. The approach 
described in this paper points to a way of predicting the glass-forming ranges of ternary 
transition metal alloys under more general conditions. 
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